Apparel & AccessoriesBooksClassical MusicDVDElectronics & PhotoGourmet Food and GroceriesHealth & Personal CareHome & GardenIndustrial & ScientificKitchen
Popular MusicMusical InstrumentsOutdoor LivingComputer HardwareComputer SoftwareSporting GoodsToolsToys and GamesVHS VideoVideo Games

Search:

Browse by Catagory:

Books

Particle Accelerators


Handbook of Accelerator Physics and Engineering: 2nd Edition

Handbook of Accelerator Physics and Engineering: 2nd Edition Lowest new price: $72.49
Lowest used price: $135.08
List price: $85.00
Author: Alexander Wu Chao

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.

The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.

A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.

Readership: Physicists, engineers and practitioners in accelerator science.

Similar Products:


The Physics and Technology of Ion Sources

The Physics and Technology of Ion Sources Lowest new price: $222.95
Lowest used price: $219.94
List price: $330.00

The first edition of this title has become a well-known reference book on ion sources. The field is evolving constantly and rapidly, calling for a new, up-to-date version of the book. In the second edition of this significant title, editor Ian Brown, himself an authority in the field, compiles yet again articles written by renowned experts covering various aspects of ion source physics and technology. The book contains full chapters on the plasma physics of ion sources, ion beam formation, beam transport, computer modeling, and treats many different specific kinds of ion sources in sufficient detail to serve as a valuable reference text.


Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab

Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab Lowest new price: $37.55
Lowest used price: $32.97
List price: $48.00
Author: Tommaso Dorigo
Brand: Dorigo Tommaso

From the mid-1980s, an international collaboration of 600 physicists embarked on the investigation of subnuclear physics at the high-energy frontier. As well as discovering the top quark, the heaviest elementary particle ever observed, the physicists analyzed their data to seek signals of new physics which could revolutionize our understanding of nature.

Anomaly! tells the story of that quest, and focuses specifically on the finding of several unexplained effects which were unearthed in the process. These anomalies proved highly controversial within the large team: to some collaborators they called for immediate publication, while to others their divulgation threatened to jeopardize the reputation of the experiment.

Written in a confidential, narrative style, this book looks at the sociology of a large scientific collaboration, providing insight in the relationships between top physicists at the turn of the millennium. The stories offer an insider's view of the life cycle of the "failed" discoveries that unavoidably accompany even the greatest endeavors in modern particle physics.

Readership: General readers interested in physics and the Fermilab experiments, graduate and undergraduate students in physics, researchers, scientific historians and physicists from other fields.

Features:

  • Anomaly Collider Physics and the Quest for New Phenomena at Fermilab

Similar Products:


The Quantum Frontier: The Large Hadron Collider

The Quantum Frontier: The Large Hadron Collider Lowest new price: $20.08
Lowest used price: $1.69
List price: $28.00
Author: Don Lincoln

The highest-energy particle accelerator ever built, the Large Hadron Collider runs under the border between France and Switzerland. It leapt into action on September 10, 2008, amid unprecedented global press coverage and widespread fears that its energy would create tiny black holes that could destroy the earth.

By smashing together particles smaller than atoms, the LHC recreates the conditions hypothesized to have existed just moments after the big bang. Physicists expect it to aid our understanding of how the universe came into being and to show us much about the standard model of particle physics―even possibly proving the existence of the mysterious Higgs boson. In exploring what the collider does and what it might find, Don Lincoln explains what the LHC is likely to teach us about particle physics, including uncovering the nature of dark matter, finding micro black holes and supersymmetric particles, identifying extra dimensions, and revealing the origin of mass in the universe.

Thousands of physicists from around the globe will have access to the LHC, none of whom really knows what outcomes will be produced by the $7.7 billion project. Whatever it reveals, the results arising from the Large Hadron Collider will profoundly alter our understanding of the cosmos and the atom and stimulate amateur and professional scientists for years to come.

Similar Products:


Introduction To The Physics Of Particle Accelerators

Introduction To The Physics Of Particle Accelerators Lowest new price: $54.65
Lowest used price: $69.04
List price: $68.00
Author: Mario Conte
Brand: Brand: World Scientific Publishing Company

This book provides a concise and coherent introduction to the physics of particle accelerators, with attention being paid to the design of an accelerator for use as an experimental tool. In the second edition, new chapters on spin dynamics of polarized beams as well as instrumentation and measurements are included, with a discussion of frequency spectra and Schottky signals. The additional material also covers quadratic Lie groups and integration highlighting new techniques using Cayley transforms, detailed estimation of collider luminosities, and new problems.

Features:

  • Used Book in Good Condition

Similar Products:


Particle Accelerator Physics II: Nonlinear and Higher-Order Beam Dynamics (Vol II)

Particle Accelerator Physics II: Nonlinear and Higher-Order Beam Dynamics (Vol II) Lowest new price: $36.97
Lowest used price: $43.31
List price: $99.00
Author: H. Wiedemann

Particle Accelerator Physics II continues the discussion of particle accelerator physics beyond the introductory Particle Accelerator Physics I. Aimed at students and scientists who plan to work or are working in the field of accelerator physics. Basic principles of beam dynamics already discussed in Vol.I are expanded into the nonlinear regime in order to tackle fundamental problems encountered in present-day accelerator design and development. Nonlinear dynamics is discussed both for the transverse phase space to determine chromatic and geometric aberrations which limit the dynamic aperture as well as for the longitude phase space in connection with phase focusing at very small values of the momentum compaction. Effects derived theoretically are compared with observations made at existing accelerators.


Collider: The Search for the World's Smallest Particles

Collider: The Search for the World's Smallest Particles Lowest new price: $2.99
Lowest used price: $1.99
List price: $27.95
Author: Paul Halpern
Brand: Paul Halpern

An accessible look at the hottest topic in physics and the experiments that will transform our understanding of the universe

The biggest news in science today is the Large Hadron Collider, the world's largest and most powerful particle-smasher, and the anticipation of finally discovering the Higgs boson particle. But what is the Higgs boson and why is it often referred to as the God Particle? Why are the Higgs and the LHC so important? Getting a handle on the science behind the LHC can be difficult for anyone without an advanced degree in particle physics, but you don't need to go back to school to learn about it. In Collider, award-winning physicist Paul Halpern provides you with the tools you need to understand what the LHC is and what it hopes to discover.

  • Comprehensive, accessible guide to the theory, history, and science behind experimental high-energy physics
  • Explains why particle physics could well be on the verge of some of its greatest breakthroughs, changing what we think we know about quarks, string theory, dark matter, dark energy, and the fundamentals of modern physics
  • Tells you why the theoretical Higgs boson is often referred to as the God particle and how its discovery could change our understanding of the universe
  • Clearly explains why fears that the LHC could create a miniature black hole that could swallow up the Earth amount to a tempest in a very tiny teapot
  • ""Best of 2009 Sci-Tech Books (Physics)""-Library Journal
  • ""Halpern makes the search for mysterious particles pertinent and exciting by explaining clearly what we don't know about the universe, and offering a hopeful outlook for future research.""-Publishers Weekly
  • Includes a new author preface, ""The Fate of the Large Hadron Collider and the Future of High-Energy Physics""

The world will not come to an end any time soon, but we may learn a lot more about it in the blink of an eye. Read Collider and find out what, when, and how.

Top Ten Ways the Large Hadron Collider Could Revolutionize the World of Science
Content from Paul Halpern

1. Solve the riddle of dark matter: the elusive invisible substance that helps steer the outer stars of galaxies and bind galaxies into clusters. The LHC could produce particles massive enough to explain this mystery.

2. Complete the puzzle of the Standard Model: the theory uniting two of the four known forces of nature, electromagnetism and the weak interaction. Based on what turns up in the LHC decay products, this model could be confirmed or need to be modified.

3. Identify the God Particle: more formally known as the Higgs boson. The Higgs is part of a mechanism that explains how the particles that make up matter acquired mass in the early universe, while photons, the carriers of light, remained massless. The mass of the Higgs, if it were found, would help indicate whether the Standard Model is fine as it stands or requires adjustment.

4. Reproduce some of the intense conditions of the Big Bang: the fiery, highly-compact state of the primordial cosmos. One of the specialized detectors at the LHC, called ALICE, will study quark-gluon plasma, a state of matter that existed in the first microseconds of the universe. At that point its temperature was so high that the quarks and gluons that would later form elementary particles such as protons and neutrons were free to move.

5. Explain the universe’s shortage of antimatter: the oppositely-charged counterparts of electrons, protons and other particles. The LHCb, another specialized detector at the LHC, is designed to look for imbalances in certain types of decays that could elucidate how the balance of a harmonious early state of the universe came to tilt in the direction of far more matter than antimatter.

6. Generate miniature black holes: hypothetical incredibly dense states of matter analogous to some of the intense gravitational conditions of the collapsed cores of massive stars. No worries, however; these would decay almost immediately into various particles before presenting even the slimmest chance of harming the Earth.

7. Reveal gateways to higher dimensions: unseen paths beyond ordinary space and time. Certain theories justify why gravity is so much weaker than the other natural forces by positing that gravity particles leak into an extra dimension that ordinary matter and light cannot penetrate. Investigators at the LHC will search for evidence of such invisible channels.

8. Unify matter and forces through supersymmetry: a hypothesis asserting that each matter particle has a counterpart in the world of forces, and each force carrier, a companion in the realm of matter. The LHC will search for the least massive superpartners of conventional particles. The verification of supersymmetry would be an extraordinarily important step toward a theory of everything.

9. Predict the ultimate fate of the cosmos: Recent astronomical discoveries have indicated that space is accelerating in its expansion. The nature of any massive particles found at the LHC could help scientists unravel the properties of this dark energy and thereby determine what will ultimately happen to the universe.

10. Inspire new generations: to pursue careers in physics and carry on the search for the ultimate theory of nature. The shining example of discoveries at the LHC would illuminate a path for future scientists to follow.

Browse Photos of the Collider (Click on image to enlarge)


A corner of the Proton Synchrotron device with its bending magnets. Built in the late 1950s, it has since been used for a variety of purposes and now serves as an early stage of the injector system to accelerate protons and ions before they reach the main ring of the Large Hadron Collider (LHC).

Paul Halpern standing on the grounds of CERN in Switzerland. In the right background is the Globe of Science and Innovation, built in 2002 as a symbol of our planet. In the far left background are the Jura Mountains in France. The 17 mile main ring of the LHC lies deep beneath the verdant countryside between the mountains and CERN.

The Linac (linear accelerator) at CERN is another component of the system for accelerating protons and ions before they reach the main ring of the LHC.

A sample cross-section of a beam pipe through which particles travel.

Features:

  • Collider The Search for the World s Smallest Particles

Similar Products:


Accelerator Physics: Example Problems With Solutions

Accelerator Physics: Example Problems With Solutions Lowest new price: $37.81
Lowest used price: $34.00
List price: $44.00
Author: William W Mackay
Brand: Mackay William W

This manual provides solutions to the problems given in the second edition of the textbook entitled An Introduction to the Physics of Particle Accelerators. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will test the student's capacity of finding the bearing of the problems in an interdisciplinary environment. The solutions to several problems will require strong engagement of the student, not only in accelerator physics but also in more general physical subjects, such as the profound approach to classical mechanics (discussed in Chapter 3) and the subtleties of spin dynamics (Chapter 13).

Features:

  • Accelerator Physics

Similar Products:


Handbook of Accelerator Physics and Engineering

Handbook of Accelerator Physics and Engineering Lowest new price: $72.84
Lowest used price: $5.07
List price: $103.00

Edited by internationally recognized authorities in the field, this expanded edition of the bestselling Handbook first published in 1999 is aimed at the design and operation of modern accelerators including Linacs, Synchrotrons and Storage Rings. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of 2200 equations, 345 illustrations and 185 tables, here one will find, in addition to the common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deals with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam and intrabeam interactions. The impedance concept and calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations deals with orbit error assessment and correction. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.


Accelerator Physics

Accelerator Physics Lowest new price: $51.79
Lowest used price: $6.49
List price: $55.00
Author: Shyh-Yuan Lee
Brand: Brand: World Scientific Publishing Company

The development of high energy accelerators began in 1911, when Rutherford discovered the atomic nuclei inside the atom. Since then, progress has been made in the following:
(1) development of high voltage dc and rf accelerators,
(2) achievement of high field magnets with excellent field quality,
(3) discovery of transverse and longitudinal beam focusing principles,
(4) invention of high power rf sources,
(5) improvement of high vacuum technology,
(6) attainment of high brightness (polarized/unpolarized) electron/ion sources,
(7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, etc.The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biomedical physics, medicine, biology, and industrial processing.This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material for graduate accelerator physics students doing thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.

Features:

  • Used Book in Good Condition


Next >>
Page 1 of 12

[Kindle]    [Kindle DX]
  Privacy Policy

CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED AS IS AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.